#### Answer

$\frac{8-6\sqrt x+x}{8-2x}$

#### Work Step by Step

$\frac{4-\sqrt x}{4+2\sqrt x}\times\frac{4-2\sqrt x}{4-2\sqrt x}$
=$\frac{(4-\sqrt x)(4-2\sqrt x)}{(4-2\sqrt x)(4+2\sqrt x)}$
=$\frac{4(4-2\sqrt x)-\sqrt x(4-2\sqrt x)}{4^{2}-(2\sqrt x)^{2}}$
=$\frac{16-8\sqrt x-4\sqrt x+2x}{16-4(x)}$
=$\frac{2(8-4\sqrt x-2\sqrt x+x)}{2(8-2x)}$
=$\frac{8-4\sqrt x-2\sqrt x+x}{8-2x}$
=$\frac{8-6\sqrt x+x}{8-2x}$