Algebra: A Combined Approach (4th Edition)

Published by Pearson
ISBN 10: 0321726391
ISBN 13: 978-0-32172-639-1

Chapter 10 - Section 10.5 - Rationalizing Numerators and Denominators of Radical Expressions - Exercise Set: 72

Answer

$\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\dfrac{x-y}{x-2\sqrt{xy}+y}$

Work Step by Step

$\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}$ Multiply the numerator and the denominator of this expression by the conjugate of the numerator and simplify if possible: $\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}\cdot\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\dfrac{(\sqrt{x})^{2}-(\sqrt{y})^{2}}{(\sqrt{x}-\sqrt{y})^{2}}=...$ $...=\dfrac{x-y}{(\sqrt{x})^{2}-2\sqrt{xy}+(\sqrt{y})^{2}}=\dfrac{x-y}{x-2\sqrt{xy}+y}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.