Algebra: A Combined Approach (4th Edition)

Published by Pearson
ISBN 10: 0321726391
ISBN 13: 978-0-32172-639-1

Chapter 10 - Section 10.5 - Rationalizing Numerators and Denominators of Radical Expressions - Exercise Set: 59

Answer

$\dfrac{\sqrt[3]{3x^{5}}}{10}=\dfrac{3x^{2}}{10\sqrt[3]{9x}}$

Work Step by Step

$\dfrac{\sqrt[3]{3x^{5}}}{10}$ First, simplify this expression: $\dfrac{\sqrt[3]{3x^{5}}}{10}=\dfrac{x\sqrt[3]{3x^{2}}}{10}=...$ Multiply this fraction by $\dfrac{\sqrt[3]{9x}}{\sqrt[3]{9x}}$ and simplify again if possible: $...=\dfrac{x\sqrt[3]{3x^{2}}}{10}\cdot\dfrac{\sqrt[3]{9x}}{\sqrt[3]{9x}}=\dfrac{x\sqrt[3]{27x^{3}}}{10\sqrt[3]{9x}}=\dfrac{x(3x)}{10\sqrt[3]{9x}}=\dfrac{3x^{2}}{10\sqrt[3]{9x}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.